Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.168
Filtrar
1.
J Physiol ; 602(5): 809-834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353596

RESUMO

Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.


Assuntos
Cálcio , Respiração , Animais , Neurônios/fisiologia , Tronco Encefálico/fisiologia , Mamíferos , Centro Respiratório/fisiologia
2.
J Physiol ; 602(5): 767-768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340086
3.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253582

RESUMO

The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.


Assuntos
Analgésicos Opioides , Neurônios , Humanos , Analgésicos Opioides/efeitos adversos , Neurônios/fisiologia , Respiração , Bulbo/fisiologia , Centro Respiratório/fisiologia
4.
Respir Physiol Neurobiol ; 320: 104188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939866

RESUMO

Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.


Assuntos
Optogenética , Centro Respiratório , Camundongos , Animais , Centro Respiratório/fisiologia , Neurônios/metabolismo , Bulbo/fisiologia , Camundongos Transgênicos
5.
Sci Rep ; 13(1): 20046, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049443

RESUMO

Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine ß-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.


Assuntos
Sulfeto de Hidrogênio , Centro Respiratório , Ratos , Masculino , Animais , Centro Respiratório/fisiologia , Sulfeto de Hidrogênio/farmacologia , Bulbo/fisiologia , Transmissão Sináptica/fisiologia , Taxa Respiratória , Sulfetos/farmacologia , Inibidores Enzimáticos/farmacologia
6.
Elife ; 122023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772793

RESUMO

The pre-Bötzinger complex (preBötC), a key primary generator of the inspiratory breathing rhythm, contains neurons that project directly to facial nucleus (7n) motoneurons to coordinate orofacial and nasofacial activity. To further understand the identity of 7n-projecting preBötC neurons, we used a combination of optogenetic viral transgenic approaches to demonstrate that selective photoinhibition of these neurons affects mystacial pad activity, with minimal effects on breathing. These effects are altered by the type of anesthetic employed and also between anesthetized and conscious states. The population of 7n-projecting preBötC neurons we transduced consisted of both excitatory and inhibitory neurons that also send collaterals to multiple brainstem nuclei involved with the regulation of autonomic activity. We show that modulation of subgroups of preBötC neurons, based on their axonal projections, is a useful strategy to improve our understanding of the mechanisms that coordinate and integrate breathing with different motor and physiological behaviors. This is of fundamental importance, given that abnormal respiratory modulation of autonomic activity and orofacial behaviors have been associated with the development and progression of diseases.


While breathing seems to come easy, it is a complex process in which many muscles coordinate to allow air to flow into the lungs. These muscles also control the flow of air we breathe out to allow us to talk, sing, eat, or drink. The brain circuits that control these muscles, can also influence other parts of the brain. The preBötzinger Complex, which is a key region of brainstem circuits that generate and control breathing, contains neurons that also project widely, connecting to other regions of the brain. This helps to modulate the sense of smell, emotional state, heart rate, and even blood pressure. Understanding how the preBötzinger Complex is organized can untangle how breathing can influence these other processes. Melo et al. wanted to learn whether they could manipulate the activity of a subgroup of preBötzinger Complex neurons that project into the facial nucleus ­ a region of the brain that controls the muscles of the face when we breathe ­ without affecting breathing. If this can be done, it might also be possible to affect blood pressure by manipulating selective preBötzinger neurons, and thus the development of hypertension, without having any impact on breathing. To test this hypothesis, Melo et al. used rats in which the activation of preBötzinger Complex neurons that project into the facial nucleus was blocked. This decreased the activity of the muscles around the nose with hardly any effect on breathing. Melo et al. also found that the state of consciousness of the rat (anesthetized or conscious) could affect how preBötzinger Complex neurons control these muscles. Melo et al. also observed that preBötzinger Complex neurons projecting into the facial nucleus had projections into many other regions in the brainstem. This might help to the coordinate respiratory, cardiovascular, orofacial, and potentially other physiological functions. The findings of Melo et al. set a technical foundation for exploring the influence of specific subgroups of preBötzinger Complex neurons on respiratory modulation of other physiological activities, including blood pressure and heart rate and in conditions, such as hypertension and heart failure. More broadly, most brain regions contain complex and heterogeneous groups of neurons and the strategy validated by Melo et. al. could be applied to unravel other brain-function relationships.


Assuntos
Núcleo do Nervo Facial , Ratos , Animais , Centro Respiratório , Respiração , Neurônios Motores , Tronco Encefálico
7.
Arch. bronconeumol. (Ed. impr.) ; 59(8): 497-501, ago. 2023. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-224083

RESUMO

Introduction: Patients with obesity hypoventilation syndrome (OHS) need treatment with positive pressure either with continuous (CPAP) or double pressure (NIV). The apnea–hypopnea index (AHI) is considered a key data for making therapeutic decisions. We hypothesized that HR may be an useful tool to establish different phenotypes and individualize treatment in patients with OHS. Our objective was to analyze the role of the respiratory center response to hypercapnia (HR) in the adequacy of positive airway pressure therapy. Method: We included subjects with OHS treated with CPAP or NIV according to AHI and baseline pCO2. We analyzed therapeutic effectiveness and treatment changes prioritizing CPAP if AHI>30/h. Therapy was considered adequate if it was effective after two years. HR was measured with the p0.1/pEtCO2 ratio and its capability to select therapy was analyzed. The statistical study was performed by means comparison (Student's t) and multivariate analysis (logistic regression). Results: 67 subjects were included of 68(11) years old, 37 (55%) males, initially 45 (67%) treated with NIV and 22 (33%) with CPAP, one case was excluded and in 25 (38%) the treatment was changed. Finally, CPAP was adequate for 29 subjects (44%) and NIV for 37 (56%). The CPAP group showed AHI 57/h (24) and p0.1/pEtCO2 0.37cmH2O/mmHg (0.23), NIV group AHI 43/h (35) and p0.1/pEtCO2 0.24 (0.15) with p=0.049 and 0.006. In multivariate analysis, p0.1/pEtCO2 (p=0.033) and AHI>30 (p=0.001) were predictors of adequate therapy. Conclusion: Measuring the RH of the respiratory center helps to select the most appropriate treatment for patients with OHS. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Síndrome de Hipoventilação por Obesidade/terapia , Ventilação não Invasiva , Hipercapnia/etiologia , Hipercapnia/terapia , Pressão Positiva Contínua nas Vias Aéreas , Fenômenos Fisiológicos Respiratórios , Centro Respiratório
8.
Elife ; 122023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458576

RESUMO

Rhythmic breathing is generated by neural circuits located in the brainstem. At its core is the preBötzinger Complex (preBötC), a region of the medulla, necessary for the generation of rhythmic breathing in mammals. The preBötC is comprised of various neuronal populations expressing neurokinin-1 receptors, the cognate G-protein-coupled receptor of the neuropeptide substance P (encoded by the tachykinin precursor 1 or Tac1). Neurokinin-1 receptors are highly expressed in the preBötC and destruction or deletion of neurokinin-1 receptor-expressing preBötC neurons severely impair rhythmic breathing. Although, the application of substance P to the preBötC stimulates breathing in rodents, substance P is also involved in nociception and locomotion in various brain regions, suggesting that Tac1 neurons found in the preBötC may have diverse functional roles. Here, we characterized the role of Tac1-expressing preBötC neurons in the generation of rhythmic breathing in vivo, as well as motor behaviors. Using a cre-lox recombination approach, we injected adeno-associated virus containing the excitatory channelrhodopsin-2 ChETA in the preBötC region of Tac1-cre mice. Employing a combination of histological, optogenetics, respiratory, and behavioral assays, we showed that stimulation of glutamatergic or Tac1 preBötC neurons promoted rhythmic breathing in both anesthetized and freely moving animals, but also triggered locomotion and overcame respiratory depression by opioid drugs. Overall, our study identified a population of excitatory preBötC with major roles in rhythmic breathing and behaviors.


Assuntos
Receptores da Neurocinina-1 , Substância P , Camundongos , Animais , Receptores da Neurocinina-1/genética , Neurônios/fisiologia , Bulbo/fisiologia , Respiração , Centro Respiratório/fisiologia , Mamíferos
9.
Arch Bronconeumol ; 59(8): 497-501, 2023 Aug.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37321904

RESUMO

INTRODUCTION: Patients with obesity hypoventilation syndrome (OHS) need treatment with positive pressure either with continuous (CPAP) or double pressure (NIV). The apnea-hypopnea index (AHI) is considered a key data for making therapeutic decisions. We hypothesized that HR may be an useful tool to establish different phenotypes and individualize treatment in patients with OHS. Our objective was to analyze the role of the respiratory center response to hypercapnia (HR) in the adequacy of positive airway pressure therapy. METHOD: We included subjects with OHS treated with CPAP or NIV according to AHI and baseline pCO2. We analyzed therapeutic effectiveness and treatment changes prioritizing CPAP if AHI>30/h. Therapy was considered adequate if it was effective after two years. HR was measured with the p0.1/pEtCO2 ratio and its capability to select therapy was analyzed. The statistical study was performed by means comparison (Student's t) and multivariate analysis (logistic regression). RESULTS: 67 subjects were included of 68(11) years old, 37 (55%) males, initially 45 (67%) treated with NIV and 22 (33%) with CPAP, one case was excluded and in 25 (38%) the treatment was changed. Finally, CPAP was adequate for 29 subjects (44%) and NIV for 37 (56%). The CPAP group showed AHI 57/h (24) and p0.1/pEtCO2 0.37cmH2O/mmHg (0.23), NIV group AHI 43/h (35) and p0.1/pEtCO2 0.24 (0.15) with p=0.049 and 0.006. In multivariate analysis, p0.1/pEtCO2 (p=0.033) and AHI>30 (p=0.001) were predictors of adequate therapy. CONCLUSION: Measuring the RH of the respiratory center helps to select the most appropriate treatment for patients with OHS.


Assuntos
Ventilação não Invasiva , Síndrome de Hipoventilação por Obesidade , Masculino , Feminino , Humanos , Síndrome de Hipoventilação por Obesidade/terapia , Centro Respiratório , Pressão Positiva Contínua nas Vias Aéreas , Fenômenos Fisiológicos Respiratórios , Hipercapnia/etiologia , Hipercapnia/terapia
10.
J Neurosci ; 43(30): 5501-5520, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37290937

RESUMO

Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.


Assuntos
Bombesina , Dióxido de Carbono , Humanos , Camundongos , Masculino , Feminino , Animais , Bombesina/metabolismo , Respiração , Células Quimiorreceptoras/fisiologia , Hipercapnia , Homeostase , Camundongos Transgênicos , Oxigênio/metabolismo , Neurônios/fisiologia , Centro Respiratório , Mamíferos
11.
J Comp Neurol ; 531(13): 1317-1332, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37211631

RESUMO

Rhythmic inspiratory activity is generated in the preBötzinger complex (preBötC), a neuronal network located bilaterally in the ventrolateral medulla. Cholinergic neurotransmission affects respiratory rhythmogenic neurons and inhibitory glycinergic neurons in the preBötC. Acetylcholine has been extensively investigated given that cholinergic fibers and receptors are present and functional in the preBötC, are important in sleep/wake cycling, and modulate inspiratory frequency through its action on preBötC neurons. Despite its role in modulating inspiratory rhythm, the source of acetylcholine input to the preBötC is not known. In the present study, we used retrograde and anterograde viral tracing approaches in transgenic mice expressing Cre-recombinase driven by the choline acetyltransferase promoter to identify the source of cholinergic inputs to the preBötC. Surprisingly, we observed very few, if any, cholinergic projections originating from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT), two main cholinergic, state-dependent systems long hypothesized as the main source of cholinergic inputs to the preBötC. On the contrary, we identified glutamatergic and GABAergic/glycinergic neurons in the PPT/LDT that send projections to the preBötC. Although these neurons contribute minimally to the direct cholinergic modulation of preBötC neurons, they could be involved in state-dependent regulation of breathing. Our data also suggest that the source of cholinergic inputs to the preBötC appears to originate from cholinergic neurons in neighboring regions of the medulla, the intermediate reticular formation, the lateral paragigantocellularis, and the nucleus of the solitary tract.


Assuntos
Acetilcolina , Centro Respiratório , Camundongos , Animais , Bulbo/fisiologia , Neurônios Colinérgicos/fisiologia , Camundongos Transgênicos , Colinérgicos
12.
Am J Ind Med ; 66(6): 510-528, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013937

RESUMO

BACKGROUND: High burnout is reported among health professionals providing in-patient care to patients with coronavirus disease 2019 (COVID-19). Data are lacking on job stressors and burnout among health providers working in dedicated outpatient facilities for patients with suspected or confirmed COVID-19. METHODS: This cross-sectional study, using a parallel mixed-methods design, was carried out in 2021-2022 among 22 nurses and 22 primary-care physicians working at a COVID Outpatient Respiratory Center (CORC) (100% participation). Work conditions were assessed via the nurse- and physician-specific Occupational Stressor Index (OSI) and occupational records. Measures of the outcome included the Copenhagen Burnout Index and current tobacco use. RESULTS: Time working in CORC displayed significant multivariate associations with personal, work- and patient-related burnout among physicians and current tobacco use among nurses. Total OSI scores showed adjusted odds ratios for work-related (1.35 (1.01 ± 1.79))(1.31 (0.99 ± 1.75)) and patient-related burnout (1.35 (1.01 ± 1.81))(1.34 (1.01 ± 1.78)) among physicians and nurses, respectively. Numerous work stressors showed significant multivariate associations with burnout and smoking. Among the stressors were: being contacted outside work hours about patients, inadequate rest breaks, many patients/shifts, difficulty taking time off, insufficient pay, frequently listening to emotionally disturbing accounts, interruptions, increased workload, time pressure, and responsibility. Heavy patient burden/time pressure was most often cited as the hardest part of work in CORC. Increased employment of staff was the most frequently suggested workplace modification. Integrative assessment reveals that increased staff could ameliorate many work stressors associated with burnout and smoking in this cohort. CONCLUSIONS: Working in CORC is an extra burden. In crisis situations such as the COVID pandemic, more staff is needed. Lowering the total job stressor load is vital.


Assuntos
Esgotamento Profissional , COVID-19 , Enfermeiras e Enfermeiros , Médicos , Humanos , COVID-19/epidemiologia , Pacientes Ambulatoriais , Estudos Transversais , Centro Respiratório , Esgotamento Profissional/epidemiologia , Esgotamento Profissional/psicologia , Médicos/psicologia , Satisfação no Emprego , Inquéritos e Questionários
13.
Elife ; 122023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884287

RESUMO

Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.


Assuntos
Encéfalo , Respiração , Tronco Encefálico/fisiologia , Centro Respiratório/fisiologia , Emoções
14.
Respiration ; 102(4): 274-286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36750046

RESUMO

BACKGROUND: Voluntary breath-holding (BH) triggers responses from central neural control and respiratory centers in order to restore breathing. Such responses can be observed using functional MRI (fMRI). OBJECTIVES: We used this paradigm in healthy volunteers with the view to develop a biomarker that could be used to investigate disorders of the central control of breathing at the individual patient level. METHOD: In 21 healthy human subjects (mean age±SD, 32.8 ± 9.9 years old), fMRI was used to determine, at both the individual and group levels, the physiological neural response to expiratory and inspiratory voluntary apneas, within respiratory control centers in the brain and brainstem. RESULTS: Group analysis showed that expiratory BH, but not inspiratory BH, triggered activation of the pontine respiratory group and raphe nuclei at the group level, with a significant relationship between the levels of activation and drop in SpO2. Using predefined ROIs, expiratory BH, and to a lesser extent, inspiratory BH were associated with activation of most respiratory centers. The right ventrolateral nucleus of the thalamus, right pre-Bötzinger complex, right VRG, right nucleus ambiguus, and left Kölliker-Fuse-parabrachial complex were only activated during inspiratory BH. Individual analysis identified activations of cortical/subcortical and brainstem structures related to respiratory control in 19 out of 21 subjects. CONCLUSION: Our study shows that BH paradigm allows to reliably trigger fMRI response from brainstem and cortical areas involved in respiratory control at the individual level, suggesting that it might serve as a clinically relevant biomarker to investigate conditions associated with an altered central control of respiration.


Assuntos
Suspensão da Respiração , Centro Respiratório , Humanos , Adulto Jovem , Adulto , Centro Respiratório/fisiologia , Respiração , Imageamento por Ressonância Magnética , Encéfalo
15.
Respir Physiol Neurobiol ; 311: 104032, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758781

RESUMO

Brainstem neural circuits located in the preBötzinger complex (preBötC) and Bötzinger complex (BötC) play a critical role in the control of breathing. In this study, glycinergic preBötC and BötC neurons were inactivated with optogenetics in vivo using mice with Cre inducible expression of eNpHR3.0-EYFP. Unilateral inhibition of glycinergic neurons in the preBötC, and to a lower extend also in the BötC, led to a higher respiratory rate. It can be concluded that functional inactivation of inhibitory neurons leads to a disinhibition of preBötC excitatory neurons and thus an increase in the respiratory drive of the network.


Assuntos
Optogenética , Taxa Respiratória , Camundongos , Animais , Centro Respiratório/fisiologia , Neurônios/metabolismo , Respiração
16.
J Neurosci ; 43(2): 240-260, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36400528

RESUMO

The preBötzinger Complex (preBötC) encodes inspiratory time as rhythmic bursts of activity underlying each breath. Spike synchronization throughout a sparsely connected preBötC microcircuit initiates bursts that ultimately drive the inspiratory motor patterns. Using minimal microcircuit models to explore burst initiation dynamics, we examined the variability in probability and latency to burst following exogenous stimulation of a small subset of neurons, mimicking experiments. Among various physiologically plausible graphs of 1000 excitatory neurons constructed using experimentally determined synaptic and connectivity parameters, directed Erdos-Rényi graphs with a broad (lognormal) distribution of synaptic weights best captured the experimentally observed dynamics. preBötC synchronization leading to bursts was regulated by the efferent connectivity of spiking neurons that are optimally tuned to amplify modest preinspiratory activity through input convergence. Using graph-theoretic and machine learning-based analyses, we found that input convergence of efferent connectivity at the next-nearest neighbor order was a strong predictor of incipient synchronization. Our analyses revealed a crucial role of synaptic heterogeneity in imparting exceptionally robust yet flexible preBötC attractor dynamics. Given the pervasiveness of lognormally distributed synaptic strengths throughout the nervous system, we postulate that these mechanisms represent a ubiquitous template for temporal processing and decision-making computational motifs.SIGNIFICANCE STATEMENT Mammalian breathing is robust, virtually continuous throughout life, yet is inherently labile: to adapt to rapid metabolic shifts (e.g., fleeing a predator or chasing prey); for airway reflexes; and to enable nonventilatory behaviors (e.g., vocalization, breathholding, laughing). Canonical theoretical frameworks-based on pacemakers and intrinsic bursting-cannot account for the observed robustness and flexibility of the preBötzinger Complex rhythm. Experiments reveal that network synchronization is the key to initiate inspiratory bursts in each breathing cycle. We investigated preBötC synchronization dynamics using network models constructed with experimentally determined neuronal and synaptic parameters. We discovered that a fat-tailed (non-Gaussian) synaptic weight distribution-a manifestation of synaptic heterogeneity-augments neuronal synchronization and attractor dynamics in this vital rhythmogenic network, contributing to its extraordinary reliability and responsiveness.


Assuntos
Neurônios , Centro Respiratório , Animais , Centro Respiratório/fisiologia , Reprodutibilidade dos Testes , Neurônios/fisiologia , Respiração , Mamíferos
17.
Elife ; 112022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321865

RESUMO

Microglia, brain-resident macrophages, play key roles during prenatal development in defining neural circuitry function, including ensuring proper synaptic wiring and maintaining homeostasis. Mammalian breathing rhythmogenesis arises from interacting brainstem neural networks that are assembled during embryonic development, but the specific role of microglia in this process remains unknown. Here, we investigated the anatomical and functional consequences of respiratory circuit formation in the absence of microglia. We first established the normal distribution of microglia within the wild-type (WT, Spi1+/+ (Pu.1 WT)) mouse (Mus musculus) brainstem at embryonic ages when the respiratory networks are known to emerge (embryonic day (E) 14.5 for the parafacial respiratory group (epF) and E16.5 for the preBötzinger complex (preBötC)). In transgenic mice depleted of microglia (Spi1-/- (Pu.1 KO) mutant), we performed anatomical staining, calcium imaging, and electrophysiological recordings of neuronal activities in vitro to assess the status of these circuits at their respective times of functional emergence. Spontaneous respiratory-related activity recorded from reduced in vitro preparations showed an abnormally slow rhythm frequency expressed by the epF at E14.5, the preBötC at E16.5, and in the phrenic motor nerves from E16.5 onwards. These deficits were associated with a reduced number of active epF neurons, defects in commissural projections that couple the bilateral preBötC half-centers, and an accompanying decrease in their functional coordination. These abnormalities probably contribute to eventual neonatal death, since plethysmography revealed that E18.5 Spi1-/- embryos are unable to sustain breathing activity ex utero. Our results thus point to a crucial contribution of microglia in the proper establishment of the central respiratory command during embryonic development.


Assuntos
Microglia , Centro Respiratório , Camundongos , Animais , Centro Respiratório/fisiologia , Tronco Encefálico/fisiologia , Neurônios/fisiologia , Respiração , Desenvolvimento Embrionário , Camundongos Transgênicos , Mamíferos
18.
Proc Natl Acad Sci U S A ; 119(29): e2121095119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858334

RESUMO

The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre-Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as Vglut2 and Sst neurons) and inhibitory neurons (defined as Vgat neurons) and inhibit and activate neurons defined by the transcription factor Dbx1 to gain an understanding of the coordination between the preBötC and swallow behavior. We found that stimulating inhibitory preBötC neurons did not mimic the premature shutdown of inspiratory activity caused by water swallows, suggesting that swallow-induced suppression of inspiratory activity is not directly mediated by the inhibitory neurons in the preBötC. By contrast, stimulation of preBötC Dbx1 neurons delayed laryngeal closure of the swallow sequence. Inhibition of Dbx1 neurons increased laryngeal closure duration and stimulation of Sst neurons pushed swallow occurrence to later in the respiratory cycle, suggesting that excitatory neurons from the preBötC connect to the laryngeal motoneurons and contribute to the timing of swallowing. Interestingly, the delayed swallow sequence was also caused by chronic intermittent hypoxia (CIH), a model for sleep apnea, which is 1) known to destabilize inspiratory activity and 2) associated with dysphagia. This delay was not present when inhibiting Dbx1 neurons. We propose that a stable preBötC is essential for normal swallow pattern generation and disruption may contribute to the dysphagia seen in obstructive sleep apnea.


Assuntos
Deglutição , Optogenética , Respiração , Centro Respiratório , Animais , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/fisiologia , Laringe , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Centro Respiratório/fisiologia
19.
Sci Data ; 9(1): 457, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907922

RESUMO

Neurons in the brainstem preBötzinger complex (preBötC) generate the rhythm and rudimentary motor pattern for inspiratory breathing movements. We performed whole-cell patch-clamp recordings from inspiratory neurons in the preBötC of neonatal mouse slices that retain breathing-related rhythmicity in vitro. We classified neurons based on their electrophysiological properties and genetic background, and then aspirated their cellular contents for single-cell RNA sequencing (scRNA-seq). This data set provides the raw nucleotide sequences (FASTQ files) and annotated files of nucleotide sequences mapped to the mouse genome (mm10 from Ensembl), which includes the fragment counts, gene lengths, and fragments per kilobase of transcript per million mapped reads (FPKM). These data reflect the transcriptomes of the neurons that generate the rhythm and pattern for inspiratory breathing movements.


Assuntos
Neurônios , Centro Respiratório , Transcriptoma , Animais , Animais Recém-Nascidos , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Respiração , Centro Respiratório/citologia , Centro Respiratório/fisiologia , Análise de Célula Única
20.
J Neurophysiol ; 128(1): 181-196, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675444

RESUMO

Cellular and network properties must be capable of generating rhythmic activity that is both flexible and stable. This is particularly important for breathing, a rhythmic behavior that dynamically adapts to environmental, behavioral, and metabolic changes from the first to the last breath. The pre-Bötzinger complex (preBötC), located within the ventral medulla, is responsible for producing rhythmic inspiration. Its cellular properties must be tunable, flexible as well as stabilizing. Here, we explore the role of the hyperpolarization-activated, nonselective cation current (Ih) for stabilizing PreBötC activity during opioid exposure and reduced excitatory synaptic transmission. Introducing Ih into an in silico preBötC network predicts that loss of this depolarizing current should significantly slow the inspiratory rhythm. By contrast, in vitro and in vivo experiments revealed that the loss of Ih minimally affected breathing frequency, but destabilized rhythmogenesis through the generation of incompletely synchronized bursts (burstlets). Associated with the loss of Ih was an increased susceptibility of breathing to opioid-induced respiratory depression or weakened excitatory synaptic interactions, a paradoxical depolarization at the cellular level, and the suppression of tonic spiking. Tonic spiking activity is generated by nonrhythmic excitatory and inhibitory preBötC neurons, of which a large percentage express Ih. Together, our results suggest that Ih is important for maintaining tonic spiking, stabilizing inspiratory rhythmogenesis, and protecting breathing against perturbations or changes in network state.NEW & NOTEWORTHY The Ih current plays multiple roles within the preBötC. This current is important for promoting intrinsic tonic spiking activity in excitatory and inhibitory neurons and for preserving rhythmic function during conditions that dampen network excitability, such as in the context of opioid-induced respiratory depression. We therefore propose that the Ih current expands the dynamic range of rhythmogenesis, buffers the preBötC against network perturbations, and stabilizes rhythmogenesis by preventing the generation of unsynchronized bursts.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/farmacologia , Humanos , Bulbo/fisiologia , Neurônios/fisiologia , Centro Respiratório/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...